ОГЭ, Математика. Геометрия: Задача №13203A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №13203A

Задача №589 из 1087
Условие задачи:

В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.

Решение задачи:

По второму свойству четырехугольника: AB+CD=BC+AD=24
По определению средней линии трапеции: m=(BC+AD)/2=24/2=12
Ответ: m=12

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0D847E

Найдите площадь треугольника, изображённого на рисунке.



Задача №C4F011

Радиус окружности, описанной около равностороннего треугольника, равен 23. Найдите длину стороны этого треугольника.



Задача №00F003

Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.



Задача №B65823

Найдите угол, который образуют минутная и часовая стрелки часов в 11:00. Ответ дайте в градусах.



Задача №FD3C36

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырёхугольника ABMN.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанная в четырехугольник окружность.
1)Описанный четырёхугольник, если у него нет самопересечений, как на рисунке, («простой»), должен быть выпуклым.
2) В выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны:
3) Если в четырёхугольник вписана окружность, то площадь такого четырёхугольника можно вычислить по формуле:
4) Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения противоположных сторон четырёхугольника. Эта прямая называется прямой Гаусса. Центр вписанной в четырёхугольник окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика