Какие из данных утверждений верны? Запишите их номера.
1) Через две различные точки на плоскости проходит единственная прямая.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника три оси симметрии.
Рассмотрим каждое утверждение.
1) "Через две различные точки на плоскости проходит единственная прямая", это утверждение верно (
свойство прямой).
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно, т.к. среди
прямоугольников только у
квадрата диагонали перпендикулярны.
3) "У
равностороннего треугольника три оси симметрии", это утверждение верно.
Оси симметрии совпадают с
биссектрисами этого треугольника.
Поделитесь решением
Присоединяйтесь к нам...
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.
Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Комментарии: