ОГЭ, Математика. Геометрия: Задача №B93B11 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №B93B11

Задача №135 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.

Решение задачи:

Рассмотрим каждое утверждение.
1) "На плоскости существует единственная точка, равноудалённая от концов отрезка", это утверждение неверно, т.к. любая точка, принадлежащая серединному перпендикуляру, равноудалена от концов отрезка ( свойство серединного перпендикуляра).
2) "Центром вписанной в треугольник окружности является точка пересечения его биссектрис", это утверждение верно ( свойство вписанной окружности).
3) "Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны". Прилежащий к известному острому углу катет равен проиведению косинуса этого угла на гипотенузу (из определения косинуса). Следовательно этот катет тоже будет равен у обоих треугольников. Тогда по первому признаку равенства, получается, что эти треугольники равны. Т.е. это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F894AD

Укажите номера верных утверждений.
1) Если один из углов треугольника прямой, то треугольник прямоугольный.
2) Диагонали квадрата точкой пересечения делятся пополам.
3) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.



Задача №0E2BF9

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.



Задача №45DD3F

В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.



Задача №336633

Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.



Задача №1A8C8D

На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства вписанной в треугольник окружности:
1) В каждый треугольник можно вписать окружность, притом только одну.
2) Центр I вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
3) Радиус вписанной в треугольник окружности равен:
.
4) Если AB — основание равнобедренного треугольника ABC, то окружность, касающаяся сторон угла ACB в точках A и B, проходит через инцентр треугольника ABC.
5) Формула Эйлера: R2-2Rr=|OI|2, где R — радиус описанной вокруг треугольника окружности, r — радиус вписанной в него окружности, O — центр описанной окружности, I — центр вписанной окружности.
6) Если прямая, проходящая через точку I параллельно стороне AB, пересекает стороны BC и CA в точках A1 и B1, то A1B1=A1B + AB1.
7) Точки касания вписанной в треугольник T окружности соединены отрезками — получается треугольник T1.
7.1) биссектрисы T являются серединными перпендикулярами T1.
7.2) Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
7.3) Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
7.4) Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
8) Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен:

9) Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно:

10) Расстояние от вершины C до центра вписанной окружности равно:

где r — радиус вписанной окружности, а гамма — угол вершины C.
11) Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам:


12) Теорема о трезубце или о трилистнике: Если W — точка пересечения биссектрисы угла A с описанной окружностью, а I — центр вписанной окружности, то |WI|=|WB|=|WC|.
13) Лемма Веррьера: пусть окружность V касается сторон AB, AC и дуги BC описанной окружности треугольника ABC. Тогда точки касания окружности V со сторонами и центр вписанной окружности треугольника ABC лежат на одной прямой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика