Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Рассмотрим каждое утверждение.
1) "На плоскости существует единственная точка, равноудалённая от концов отрезка", это утверждение неверно, т.к. любая точка, принадлежащая
серединному перпендикуляру, равноудалена от концов отрезка (
свойство серединного перпендикуляра).
2) "Центром вписанной в треугольник окружности является точка пересечения его биссектрис", это утверждение верно (
свойство вписанной окружности).
3) "Если гипотенуза и острый угол одного
прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны". Прилежащий к известному острому углу катет равен проиведению косинуса этого угла на гипотенузу (из
определения косинуса). Следовательно этот катет тоже будет равен у обоих треугольников. Тогда по
первому признаку равенства, получается, что эти треугольники равны. Т.е. это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Если один из углов треугольника прямой, то треугольник прямоугольный.
2) Диагонали квадрата точкой пересечения делятся пополам.
3) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Комментарии: