ОГЭ, Математика. Геометрия: Задача №04CBF1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Площадь ромба можно найти по формуле:
S=ab/2, где a и b - диагонали ромба.
Тогда:
S=ab/2=39*2/2=39
Ответ: 39

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C14EA3

Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.



Задача №44BC3F

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 140°.



Задача №2D9D28

Площадь прямоугольного треугольника равна 23/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №4081C6

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №0000C2

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Ромб - это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом.
Свойства ромба:
1) Ромб является параллелограммом. Его противолежащие стороны равны и попарно параллельны, АВ||CD, AD||ВС.
2) Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
3) Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
4) Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика