Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №2D9D28

Задача №710 из 1067
Условие задачи:

Площадь прямоугольного треугольника равна 23/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.

Решение задачи:

Площадь прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2
Пусть 30-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg30°=BC/AC=3/3 (по таблице).
BC=AC3/3
S=AC*(AC3/3)/2=AC2(3/3)/2=23/3
AC2/2=2
AC2=4
AC=2
Ответ: 2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №8B0092

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.

Задача №5AAF21

Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 7.

Задача №5E3594

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.

Задача №176EA1

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84°. Найдите величину угла OMK. Ответ дайте в градусах.

Задача №896FB2

Основание AC равнобедренного треугольника ABC равно 16. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика