Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Проведем отрезок, параллельный основаниям, как показано на рисунке.
EF -
средняя линия трапеции, так как соединяет середины боковых сторон трапеции (по
теореме Фалеса).
∠ADE=∠DEF (так как это
накрест-лежащие углы при параллельных прямых EF и AD и секущей ED).
Получается, что ∠DEF=∠EDF (так как DE -
биссектриса).
Значит треугольник EFD -
равнобедренный (по
свойству равнобедренного треугольника).
Следовательно, EF=FD (по
определению).
EF=FD=CD/2=20/2=10
EF=(BC+AD)/2=10
(2+AD)/2=10
2+AD=20
AD=18
Проведем
высоты как показано на рисунке.
MN=BC=3 (т.к. BCNM -
прямоугольник).
BM=CN=h
Обозначим AM как x, для удобства.
AD=AM+MN+ND
18=x+2+ND
ND=16-x
Для треугольника ABM запишем
теорему Пифагора:
AB2=h2+x2
122=h2+x2
h2=144-x2
Для треугольника CDN запишем
теорему Пифагора:
CD2=h2+ND2
202=h2+(16-x)2
400=h2+(16-x)2
Подставляем вместо h2 значение из первого уравнения:
400=144-x2+(16-x)2
400-144=-x2+162-2*16*x+x2
256=162-2*16*x |:16
16=16-2x
2x=0
x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции.
Тогда площадь трапеции равна:
S=AB(AD+BC)/2=12(18+2)/2=6*20=120
Ответ: 120
Поделитесь решением
Присоединяйтесь к нам...
На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
В трапеции ABCD AB=CD, ∠BDA=62° и ∠BDC=42°. Найдите угол ABD. Ответ дайте в градусах.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Комментарии: