ОГЭ, Математика. Геометрия: Задача №D35E73 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D35E73

Задача №395 из 1084
Условие задачи:

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=5, AC=45.

Решение задачи:

Рассмотрим треугольники ABC и ABH.
∠A - общий
∠AHB=∠ABC
Следовательно, эти треугольники подобны (по признаку подобия)
Тогда AC/AB=AB/AH (гипотенуза большого треугольника относится к гипотенузе маленького как малый катет большого треугольника к малому катету маленького треугольника)
45/AB=AB/5
45*5=AB2
225=AB2
AB=15
Ответ: AB=15

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №09F3A1

От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода.



Задача №1113A9

Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.



Задача №06F02D

Точка O – центр окружности, на которой лежат точки P, Q и R таким образом, что OPQR – ромб. Найдите угол ORQ. Ответ дайте в градусах.



Задача №07F434

В треугольнике ABC угол C равен 90°, sinA=0,75, AC=7. Найдите AB.



Задача №7EA3DF

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 3 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика