В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.
Площадь
трапеции равна h*(a+b)/2, где a и b - основания трапеции, h - высота трапеции.
hтрапеции*(8+5)/2=13 (по условию задачи)
h=13/6,5=2
Проведем
высоту треугольника ABC, как показано на рисунке.
hтреугольника=hтрапеции, так как они обе перпендикулярны одним и тем же параллельным основаниям трапеции и образуют прямоугольник.
Sтреугольника=hтреугольника*BC/2=2*5/2=5
Ответ: Sтреугольника=5
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ?AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии:
(2015-12-24 19:18:01) флюра: спасибо. очень удобно.