В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.
Площадь
трапеции равна h*(a+b)/2, где a и b - основания трапеции, h - высота трапеции.
hтрапеции*(8+5)/2=13 (по условию задачи)
h=13/6,5=2
Проведем
высоту треугольника ABC, как показано на рисунке.
hтреугольника=hтрапеции, так как они обе перпендикулярны одним и тем же параллельным основаниям трапеции и образуют прямоугольник.
Sтреугольника=hтреугольника*BC/2=2*5/2=5
Ответ: Sтреугольника=5
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=24, AB=25. Найдите sinB.
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
В треугольнике ABC угол C равен 90°, AC=6, tgA=2√
Синус острого угла A треугольника ABC равен
. Найдите CosA.
Комментарии:
(2015-12-24 19:18:01) флюра: спасибо. очень удобно.