Найдите угол ABC. Ответ дайте в градусах.
Проведем отрезки как показано на рисунке. Точка О - центр окружности
Рассмотрим треугольник AOD.
Данный треугольник
прямоугольный, так как ∠ODA=90°
AD=OD=4, следовательно треугольник AOD -
равнобедренный.
По
теореме о сумме углов треугольника:
180°=∠ODA+∠DAO+∠AOD
180°=90°+∠DAO+∠AOD
90°=∠DAO+∠AOD
А так как ∠DAO=∠AOD (по
свойству равнобедренного треугольника), то:
∠DAO=∠AOD=90°/2=45°.
Рассмотрим треугольники AOD и COD.
AD=CD=4
OD=4 - общая сторона.
∠ODA=∠ODC=90°
Тогда, по
первому признаку равенства треугольников, данные треугольники равны.
Следовательно, ∠AOD=∠COD=45°
∠AOC=∠AOD+∠COD=45°+45°=90°
∠AOC - является
центральным для окружности, следовательно градусная мера дуги, на которую опирается этот угол тоже равна 90°.
∠ABC - является
вписанным в окружность и опирается на ту же дугу. Следовательно, по
свойству угла, он равен половине градусной меры дуги. ∠ABC=90°/2=45°.
Ответ: 45
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 3. Найдите радиус окружности.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Найдите площадь треугольника, изображённого на рисунке.
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
Комментарии: