ОГЭ, Математика. Геометрия: Задача №4BFABA | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4BFABA

Задача №128 из 1087
Условие задачи:

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BOC.

Решение задачи:

Рассмотрим треугольники ABC и ACD.
Сторона AC - общая для этих треугольников, AB=CD и BC=AD (по свойству параллелограмма), следовательно рассматриваемые треугольники равны (по третьему признаку). А значит равны и их площади, и равны эти площади половине площади параллелограмма.
Рассмотрим треугольник ACD, как только что выяснили, площадь этого треугольника равна половине площади параллелограмма. Отрезок DO - является медианой (по третьему свойству параллелограмма), и соответственно делит этот треугольник на два равновеликих треугольника, т.е. равных по площади ( свойство медианы).
Следовательно площадь AOD равна половине площади треугольника ACD. SAOD=SACD/2=SABCD/4.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9069D8

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.



Задача №29D63A

Найдите площадь параллелограмма, изображённого на рисунке.



Задача №151151

В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.



Задача №1B4DE1

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 110°.



Задача №D9AC2F

Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АС, если сторона АВ равна 3.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика