Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
25° и 100° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /ABC=/BCD=25°+100°=125°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360° = 125° + 125° + /BAD + /ADC,
/BAD+/ADC=360°-125°-125°=110°, а учитывая, что /BAD=/ADC (по тому же
свойству равнобедренной трапеции), получаем /BAD=/ADC=110°/2=55°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 55°.
Поделитесь решением
Присоединяйтесь к нам...
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=34.
В трапеции ABCD основания AD и BC равны соответственно 33 и 11,
а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
В треугольнике АВС углы А и С равны 40° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
Комментарии:
(2015-05-24 18:26:39) Администратор: Аида, Вы забыли еще про два угла, посмотрите повнимательней.
(2015-05-24 17:11:43) Аида: 125+125= 250 же будет,почему вы 360 написали?