Точка О – центр окружности, /BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=10°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 10°*2=20°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=20°.
Ответ: /BOC=20°.
Поделитесь решением
Присоединяйтесь к нам...
Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Площадь прямоугольного треугольника равна 800√
Комментарии: