ОГЭ, Математика. Геометрия: Задача №6A8458 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №6A8458

Задача №84 из 1087
Условие задачи:

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.

Решение задачи:

Рассмотрим треугольники DAE и EBC. AE=EB, т.к. точка E - середина AB, EC=ED (из условия задачи), AD=BC (по свойству параллелограмма). Соответственно, треугольники DAE и EBC равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /DAE=/EBC.
AD||BC (по определению параллелограмма), рассмотрим сторону AB как секущую к этим параллельным сторонам. Тогда получается, что сумма углов DAE и EBC равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону AD как секущую к этим параллельным сторонам.
/DAE и /ADC - внутренние односторонние. Следовательно их сумма равна 180°. А так как /DAE=90°, то /ADC тоже равен 90°.
Аналогично доказывается, что /BCD тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №52A416

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 80°. Найдите величину угла OAB.



Задача №8274E3

Площадь круга равна 90. Найдите площадь сектора этого круга, центральный угол которого равен 60°.



Задача №C4F011

Радиус окружности, описанной около равностороннего треугольника, равен 23. Найдите длину стороны этого треугольника.



Задача №FD3C36

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырёхугольника ABMN.



Задача №3D1628

На отрезке AB выбрана точка C так, что AC=12 и BC=3. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
Свойства прямоугольника:
1) Противолежащие стороны равны.
2) Диагонали прямоугольника равны
3) Вокруг прямоугольника всегда можно описать окружность.
4) Диагонали точкой пересечения делятся пополам;

Признак прямоугольника: Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика