В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Рассмотрим треугольник АОВ. Этот треугольник
равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по
первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=55°
Ответ: /OCD=55°.
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен 50°. Найдите угол ACB. Ответ дайте в градусах.
Найдите тангенс угла
AOB.
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 27, тангенс угла BAC равен 9/40. Найдите радиус вписанной окружности треугольника ABC.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Комментарии:
(2017-02-14 20:09:10) Администратор: Катя, была проблема у хостера, проблема устранена. Сейчас все читаемо?
(2017-02-14 14:50:46) Катя: не грузит решение, все в знаках вопроса. что такое??