В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Рассмотрим треугольники ABC и ACD.
Сторона AC - общая для этих треугольников.
AB=CD и BC=AD (по
свойству параллелограмма).
Следовательно, рассматриваемые треугольники равны (по
третьему признаку). А значит равны и их площади, и равны эти площади половине площади параллелограмма.
Рассмотрим треугольник ACD.
Как только что выяснили, площадь этого треугольника равна половине площади параллелограмма.
Отрезок DK - является
медианой (по третьему
свойству параллелограмма), и соответственно делит этот треугольник на два равновеликих треугольника, т.е. равных по площади (
свойство медианы).
Следовательно площадь AKD равна половине площади треугольника ACD.
SAKD=SACD/2=SABCD/4.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
Найдите площадь трапеции, изображённой на рисунке.
Касательные в точках A и B к окружности с центром O пересекаются под углом 28°. Найдите угол ABO. Ответ дайте в градусах.
Комментарии:
(2019-05-10 12:02:43) Администратор: Маша, DK - медиана по третьему свойству параллелограмма, которое гласит, что диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. В решении есть ссылки на эти материалы, нажимайте на них.
(2019-05-10 09:50:42) Маша: Почему ДК является медианой и делит треугольник на 2 равновеликих треугольника,не очень понятно?
(2016-01-17 15:35:44) Маргарита: Спасибо огромное! Очень помогло)
(2015-05-24 18:28:57) Администратор: Антош, это свойство медианы.
(2015-05-24 18:12:51) Антош: А почему медиана делит на два равновеликих?
(2015-01-08 12:21:10) : cgfcb,j