ОГЭ, Математика. Геометрия: Задача №1CEEC4 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1CEEC4

Задача №93 из 1087
Условие задачи:

В равнобедренной трапеции основания равны 3 и 7, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.

Решение задачи:

Проведем высоты как показано на рисунке. И рассмотрим треугольник CDF. Это прямоугольный треугольник (т.к. /CFD - прямой).
По теореме о сумме углов треугольника найдем угол FCD
/FCD=180°-90°-45°=45°. Заметим, что /FCD=/FDC. Следовательно, треугольник равнобедренный (по свойству равнобедренного треугольника). Отсюда следует, что FD=FC (по определению равнобедренного треугольника).
Рассмотрим треугольник ABE. /BAE=/FDC=45° (т.к. по условию задачи трапеция равнобедренная).
Аналогично по теореме о сумме углов треугольника получим, что /ABE=180°-90°-45°=45°, а следовательно (аналогично предыдущему треугольнику) треугольник ABE - равнобедренный.
Причем эти треугольники равны (AB=CD, BE=CF и /ABE=/FCD - первый признак равенства)=> AE=FD. Рассмотрим четырехугольник BCFE.
Т.к. BC||EF, BE и FC - высоты, следовательно /BEF=90°=/CFE. /EBC=/BCF=90°. Следовательно четырехугольник BCFE - прямоугольник => BC=EF.
Теперь можем записать:
AD=AE+EF+FD, 7=AE+3+FD, 7=AE+3+AE
4=2*AE => AE=2.
Т.к. AE=BE=2, а BE-высота трапеции, то теперь можем вычислить площадь трапеции.
Sтрапеции=BE*(BC+AD)/2
Sтрапеции=2*(3+7)/2=10.
Ответ: Sтрапеции=10.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4D5C0E

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №8498EC

В треугольнике ABC с тупым углом ABC проведены высоты AA1 и CC1. Докажите, что треугольники A1BC1 и ABC подобны.



Задача №A0C43B

Окружности радиусов 3 и 33 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.



Задача №09F434

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.



Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть составляет 90°).
Сторона, противоположная прямому углу, называется гипотенузой (сторона c на рисунке).
Стороны, прилегающие к прямому углу, называются катетами.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика