Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=6, AC=10.
OC является радиусом окружности R, AO=AC-OC.
Проведем отрезок BO. BO - так же является радиусом окружности. AB -
касательная к окружности, следовательно AB перпендикулярен BO (по
свойству касательной).
Значит треугольник ABO -
прямоугольный, тогда по
теореме Пифагора:
AO2=AB2+BO2
(AC-OC)2=AB2+R2
(10-R)2=62+R2
100-20R+R2=36+R2
100-36=20R
R=3,2
D=2R=2*3,2=6,4
Ответ: D=6,4
Поделитесь решением
Присоединяйтесь к нам...
На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
В трапеции ABCD AB=CD, ∠BDA=35° и ∠BDC=58°. Найдите угол ABD. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Комментарии:
(2019-06-03 21:37:20) Администратор: Владимир, AB-касательная по условию задачи, а касательная перпендикулярна радиусу по свойству касательной.
(2019-06-02 11:11:48) владимир: Почему АВ должна быть касательной?
(2019-06-02 11:06:33) владимир: Почему угол ABO(О-центр окружности)является прямым?