ОГЭ, Математика. Геометрия: Задача №AAF6DE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются соответственними.
Из подобия этих треугольников следует, что AB/DE=BC/EC, AB/DE=(BE+EC)/EC, отсюда (AB*EC)/DE=BE+EC
BE=(AB*EC)/DE-EC
BE=(4*9)/1,8-9=11
Ответ: расстояние от фонаря до человека 11 м.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D0E82E

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите этот диаметр, если диаметр описанной окружности треугольника ABC равен 8.



Задача №D07B18

Радиус окружности, вписанной в равносторонний треугольник, равен 23. Найдите длину стороны этого треугольника.



Задача №061A73

Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.



Задача №01C996

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=79 и BC=BM. Найдите AH.



Задача №A57605

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика