Стороны AC, AB, BC треугольника ABC равны 3√
По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 3√
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(√
11=9*2+1-6*√
11-19=-6*√
8=6*√
cos(/AKC)=cos(/ACB)=8/(6*√
cos(/AKC)=cos(/ACB)=4/(3*√
cos(/AKC)=2/3*√
Ответ: cos(/AKC)=2/3*√
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 1,8 м?
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Радиус окружности, описанной около равностороннего треугольника, равен 16. Найдите высоту этого треугольника.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
Комментарии: