ОГЭ, Математика. Геометрия: Задача №1F54D7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем отрезки из центра квадрата к двум его углам, как на рисунке.
Заметим, что:
1) Эти отрезки и являются радиусами окружности.
2) Получившийся треугольник является прямоугольным (по свойству квадрата).
Тогда мы можем применить теорему Пифагора (пусть сторона квадрата - это "а"):
a2=R2+R2
a2=2R2
(4√2)2=2R2
16*2=2R2 |:2
16=R2
R=√16=4
Ответ: 4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №DFC557

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №D56817

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №AA289E

Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 1° соответственно. Ответ дайте в градусах.



Задача №D07B18

Радиус окружности, вписанной в равносторонний треугольник, равен 23. Найдите длину стороны этого треугольника.



Задача №FD77A1

Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика