Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
В равностороннем треугольнике все стороны равны, пусть стороны равны "а".
По свойству равностороннего треугольника высота так же является и медианой, т.е. делит сторону по полам.
Треугольники, которые образует высота, являются прямоугольными.
Следовательно, к ним можно применить теорему Пифагора:
3a2=4*169*3 |:3
a2=4*169
a2=676
a=√676=26
Ответ: 26
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Комментарии: