Точка O – центр окружности, на которой лежат точки P, Q и R таким образом, что OPQR – ромб. Найдите угол ORQ. Ответ дайте в градусах.
FO=RO (т.к. это радиусы окружности)
FO=RO=FQ=QR (по
определению ромба)
Проведем отрезок OQ.
OQ тоже радиус окружности, следовательно OQ=FO=RO=FQ=QR
Следовательно, треугольники FQO и QRO -
равносторонние, а все углы равностороннего треугольника равны 60° (по
свойству).
Следовательно, /ORQ=60°
Ответ: 60
Поделитесь решением
Присоединяйтесь к нам...
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АС, если сторона АВ равна 4.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 75°. Найдите величину угла OAB.
Прямая касается окружности в точке K. Центр окружности – точка O. Хорда KM образует с касательной угол, равный 40°. Найдите величину угла KOM. Ответ дайте в градусах.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 154°. Найдите угол C. Ответ дайте в градусах.
Комментарии: