Боковые стороны AB и CD трапеции ABCD равны соответственно 18 и 30, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Проведем отрезок, параллельный основаниям, как показано на рисунке.
EF -
средняя линия трапеции, так как соединяет середины боковых сторон трапеции (по
теореме Фалеса).
∠ADE=∠DEF (так как это
накрест-лежащие углы при параллельных прямых EF и AD и секущей ED).
Получается, что ∠DEF=∠EDF (так как DE -
биссектриса).
Значит треугольник EFD -
равнобедренный (по
свойству равнобедренного треугольника).
Следовательно, EF=FD (по
определению).
EF=FD=CD/2=30/2=15
EF=(BC+AD)/2=15
(3+AD)/2=15
3+AD=30
AD=27
Дальше площадь трапеции можно найти разными способами:
1) Вычислить
высоту трапеции. И вычислить площадь через высоту
2) Вычислить площадь через стороны трапеции.
Первый вариант
Проведем
высоты как показано на рисунке.
MN=BC=3 (т.к. BCNM -
прямоугольник).
BM=CN=h
Обозначим AM как x, для удобства.
AD=AM+MN+ND
27=x+3+ND
ND=24-x
Для треугольника ABM запишем
теорему Пифагора:
AB2=h2+x2
182=h2+x2
h2=324-x2
Для треугольника CDN запишем
теорему Пифагора:
CD2=h2+ND2
302=h2+(24-x)2
900=h2+(24-x)2
Подставляем вместо h2 значение из первого уравнения:
900=324-x2+(24-x)2
900-324=-x2+242-2*24*x-x2
576=242-2*24*x
576=576-48x
48x=0
x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции.
Тогда площадь трапеции равна:
S=AB(AD+BC)/2=18(27+3)/2=9*30=270
Второй вариант
Площадь трапеции можно найти по
формуле.
Ответ: 270
Поделитесь решением
Присоединяйтесь к нам...
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 52°. Найдите угол B этой трапеции. Ответ дайте в градусах.
Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.
Найдите площадь треугольника, изображённого на рисунке.
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Комментарии:
(2015-03-05 20:29:43) Администратор: Евгений, согласен. Такой вариант тоже правильный.
(2015-03-05 18:18:09) Евгений: 18*18-X*X=30*30-(24-X)*(24-X)-решая это уравнение получим х=0
(2015-03-02 21:35:56) Администратор: Евгений, а почему х=0?
(2015-03-02 21:04:57) Евгений: Можно провести высоты из точек ВК и СМ. выразить эти высоты из прямоугольных треугольников АВК и СМD, обозначив сторону АК за х. Получится что х=о.То есть АВ перпендикулярно АD. И находим площадь.