На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
1) По условию задачи /ADB=/BEC, следовательно,
смежные им углы /BDE и /BEС тоже равны друг другу.
Тогда треугольник BDE -
равнобедренный (по
свойству).
Следовательно, BD=DE, по
определению равнобедренного треугольника.
2) Рассмотрим треугольники ABD и CBE.
AD=CE (по условию),
BD=BE (согласно п.1),
/ADB=/BEC (по условию),
следовательно эти треугольники равны (по
первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по
определению).
Поделитесь решением
Присоединяйтесь к нам...
От столба высотой 9 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 12 м. Вычислите длину провода.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
На окружности с центром O отмечены точки A и B так, что
/AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Комментарии: