На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C
и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ | ЗНАЧЕНИЯ ПРОИЗВОДНОЙ |
А | 1) -0,7 |
B | 2) 1,4 |
C | 3) -1,8 |
D | 4) 0,5 |
Производную от функции, в данном случае, лучше рассматривать как тангенс угла наклона касательной.
Если тангенс положительный (т.е. угол острый), то и производная положительна и наоборот.
Тогда сразу можно сказать, что в точках B и C - значение производной положительно.
А в точках A и D - отрицательно.
Если посмотреть на таблицу углов, то ставится понятно, что при увеличени угла значение тангенса увеличивается (tg0°=0, tg45°=1, tg90°=+∞).
Следовательно, значение тангенса в точке B больше значения тангенса в точке C.
Получаем, что:
В точке B - значение производной равно 1,4.
В точке C - значение производной равно 0,5.
При дальнейшем увеличении угла (от 90° до 180°) значение тангенса меняется от -∞ до 0, т.е. уменьшается по модулю.
Следовательно, в точке A значение производной равно -1,8, а в точке D - значение производной равно -0,7.
Ответ:
A | B | C | D |
3) | 2) | 4) | 1) |
Поделитесь решением
Присоединяйтесь к нам...
На графике изображена зависимость частоты пульса гимнаста от времени
в течение и после его выступления в вольных упражнениях.
На горизонтальной оси отмечено время (в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси — частота пульса (в ударах в минуту).
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.
ИНТЕРВАЛЫ ВРЕМЕНИ | ХАРАКТЕРИСТИКИ |
А) 4-5 мин. | 1) частота пульса упала до 110 уд./мин. |
Б) 5-6 мин. | 2) частота пульса упала ниже 80 уд./мин. |
В) 6-7 мин. | 3) частота пульса достигла максимума за всё время выступления и после него |
Г) 7-8 мин. | 4) частота пульса росла на всём интервале |
На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C
и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ | ЗНАЧЕНИЯ ПРОИЗВОДНОЙ |
А | 1) 0,5 |
B | 2) -0,7 |
C | 3) 4 |
D | 4) -3 |
На рисунке изображён график значений атмосферного давления в некотором городе за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба.
Определите по рисунку наибольшее значение атмосферного давления
за данные три дня (в миллиметрах ртутного столба).
На графике изображена зависимость скорости движения легкового автомобиля от времени. На вертикальной оси отмечена скорость легкового автомобиля в км/ч, на горизонтальной — время в секундах, прошедшее с начала движения автомобиля.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автомобиля на этом интервале.
ИНТЕРВАЛЫ ВРЕМЕНИ | ХАРАКТЕРИСТИКИ |
А) 0–30 c | 1) скорость автомобиля достигла максимума за всё время движения автомобиля |
Б) 30–60 c | 2) скорость автомобиля не уменьшалась и не превышала 40 км/ч |
В) 60–90 c | 3) автомобиль сделал остановку на 15 секунд |
Г) 90–120 c | 4) скорость автомобиля не увеличивалась на всём интервале |
На рисунке изображён график значений атмосферного давления в некотором городе за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба.
Определите по рисунку наименьшее значение атмосферного давления
за данные три дня (в миллиметрах ртутного столба).
α | sinα | cosα | tgα | ctgα |
0° | 0 | 1 | 0 | --- |
30° | 1/2 | √ |
√ |
√ |
45° | √ |
√ |
1 | 1 |
60° | √ |
1/2 | √ |
√ |
90° | 1 | 0 | --- | 0 |
120° | √ |
-1/2 | -√ |
0 |
135° | √ |
-√ |
-1 | -1 |
150° | 1/2 | -√ |
-√ |
-√ |
180° | 0 | -1 | 0 | --- |
210° | -1/2 | -√ |
√ |
√ |
225° | -√ |
-√ |
1 | 1 |
240° | -√ |
-1/2 | √ |
√ |
270° | -1 | 0 | --- | 0 |
300° | -√ |
1/2 | -√ |
-√ |
315° | -√ |
√ |
-1 | -1 |
330° | -1/2 | √ |
-√ |
-√ |
360° | 1 | 0 | 0 | --- |
Комментарии: