Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Проведем
высоты h1 и h2 как показано на рисунке.
Рассмотрим треугольники CFG и FDJ.
∠CGF=∠FJD=90° (т.к. мы проводили
высоты).
∠CFG=∠FDJ (т.к. это
соответственные углы).
Следовательно, эти треугольники
подобны по
первому признаку подобия.
По
определению подобных треугольников:
CF/DF=CG/FJ=4/3
Для простоты обозначим:
CG=h1
FJ=h2
SEBCF=(CB+EF)*h1/2
SAEFD=(EF+AD)*h2/2
SABCD=(BC+AD)*(h1+h2)/2
Так сумма площадей этих
трапеций равна площади большой трапеции, то запишем:
(CB+EF)*h1/2+(EF+AD)*h2/2=(BC+AD)*(h1+h2)/2
(CB+EF)*h1+(EF+AD)*h2=(BC+AD)*(h1+h2)
CB*h1+EF*h1+EF*h2+AD*h2=BC*h1+BC*h2+AD*h1+AD*h2
CB*h1+EF*h1-BC*h1-AD*h1=BC*h2+AD*h2-EF*h2-AD*h2
(CB+EF-BC-AD)*h1=(BC+AD-EF-AD)*h2
(EF-AD)*h1=(BC-EF)*h2
h1/h2=(BC-EF)/(EF-AD)
4/3=(14-EF)/(EF-42)
4(EF-42)=3(14-EF)
4*EF-168=42-3*EF
7*EF=210
EF=30
Ответ: EF=30
Поделитесь решением
Присоединяйтесь к нам...
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.
На окружности с центром O отмечены точки A и B так, что ∠AOB=40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги.
Какой угол (в градусах) описывает часовая стрелка за 2 минуты?
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии:
(2017-03-06 23:30:43) Администратор: Алина, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-06 11:04:23) АЛИНА: на прямой последовательно отмечены точки L,K,P,F,E,так что LK=KP=PF=FE=2см.Какие ещё равные отрезки определяются по этим точкам?Записать эти отрезки и найти их длины
(2016-12-18 20:10:06) Администратор: Вероника, аналогично этой.
(2016-12-18 18:45:22) Вероника: № 4) Прямая, параллельная основаниям трапеции АВСD, пересекает её боковые стороны АВ и СD в точках Е и F соответственно. Найдите длину отрезка ЕF, если АD = 45, ВС = 20, СF : DF = 4 : 1. Как решить эту задачу ?
(2015-05-10 19:03:07) Администратор: Мария, я дописал в решение пару строк, чтобы стало понятней.
(2015-05-10 16:28:56) Мария: Помогите пожалуйста, как из (CB+EF)*h1+(EF+AD)*h2=(BC+AD)*(h1+h2) получилось (CB+EF-BC-AD)*h1=(BC+AD-EF-AD)*h2 ?
(2015-05-09 14:45:52) Администратор: Елена, отличный вариант, скоро его опубликую, спасибо!
(2015-05-08 21:51:36) Елена: Проведём из вершины С прямую параллельную АВ. Она разобьёт АD на отрезки, равные 14 и 28 , а EF на отрезки 14 и х. Трапеция будет разделена на параллелограмм и треугольник. Прямая EF делит этот треугольник на два подобных треугольника. Коэффициент подобия 4/7. х=16, тогда EF=14+16=30