Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №764CF5

Задача №837 из 1068
Условие задачи:

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.

Решение задачи:

Вариант №1 (Предложил пользователь Елена)
Проведем отрезок MP, как показано на рисунке. BM - диаметр малой окружности (по условию задачи), следовательно треугольник BMP - прямоугольный с гипотенузой BM (по свойству описанной окружности).
К тому же, по условию задачи, точка Р - середина стороны BC, т.е. BM - серединный перпендикуляр к стороне BC.
Проведем серединный перпендикуляр к стороне AC, как показано на рисунке.
Центр описанной окружности совпадает с точкой пересечения серединных перпендикуляров треугольника, а в данном случае - это точка М, т.е. точка М и есть центр описанной окружности.
Так как получилось, что центр окружности лежит на стороне описываемого треугольника, то AM и MC - радиусы данной окружности и равны R=AC/2=4/2=2.
Ответ: 2


Вариант №2
Рассмотрим рисунок. Проведем отрезок MP, как показано на рисунке. BM - диаметр малой окружности (по условию задачи), следовательно треугольник BMP - прямоугольный с гипотенузой BM (по свойству описанной окружности).
Рассмотрим треугольники BMP и CPM:
MP - общая сторона
BP=PC (по условию задачи)
∠BPM=∠CPM, т.к. ∠BPM - прямой, а ∠CPM - ему смежный.
Следовательно треугольники BMP и CPM равны (по первому признаку). Отсюда следует, что BM=MC=MA.
Рассмотрим треугольник BMC. Т.к. MB=MC, то этот треугольник равнобедренный, следовательно ∠MCP=∠PBM (по свойству равнобедренных треугольников).
В треугольнике ABM аналогичная ситуация, ∠BAM=∠ABM. Т.е. получается, что ∠BAM+∠MCP=∠ABC. Из теоремы о сумме углов треугольника следует, 180°=∠BAM+∠MCP+∠ABC
180°=∠ABC+∠ABC
180°=2*∠ABC
90°=∠ABC
Из чего следует, что треугольник ABC - прямоугольный. По свойству описанной окружности следует, что точка М - центр окружности => R=AC/2=4/2=2.
Ответ: 2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №A92357

Хозяин участка планирует устроить в жилом доме зимнее отопление. Он рассматривает два варианта: электрическое или газовое отопление. Цены на оборудование и стоимость его установки, данные о расходе газа, электроэнергии и их стоимости даны в таблице.

Нагреватель (котёл) Прочее оборудование и монтаж Средн. расход газа/ средн. потребл. мощность Стоимость газа/электро­энергии
Газовое отопление 24 000 руб. 18 280 руб. 1,2 куб. м/ч 5,6 руб./куб. м
Электр. отопление 20 000 руб. 15 000 руб. 5,6 кВт 3,8 руб./(кВт*ч)

Обдумав оба варианта, хозяин решил установить газовое оборудование. Через сколько часов непрерывной работы отопления экономия от использования газа вместо электричества компенсирует разность в стоимости устройства газового и электрического отопления?

Задача №EC6A26

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.

Задача №936640

Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.

Задача №F0670B

Найдите площадь треугольника, изображённого на рисунке.

Задача №D22388

Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика