В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
∠ADC=∠BDA+∠BDC=67°+28°=95°
Т.к. AB=CD, то
трапеция ABCD -
равнобедренная.
Тогда ∠ADC=∠BAD=95° (по
свойству равнобедренной трапеции).
Рассмотрим треугольник ABD:
По
теореме о сумме углов треугольника:
180°=∠BAD+∠ADB+∠ABD
180°=95°+67°+∠ABD
∠ABD=18°
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь трапеции, изображённой на рисунке.
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
Комментарии: