ОГЭ, Математика. Геометрия: Задача №F63DA7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F63DA7

Задача №1009 из 1087
Условие задачи:

На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.

Решение задачи:

Проведем высоту из вершины B.
Заметим, что это высота не только треугольника ABC, но и треугольника ABD.
Найдем высоту, используя формулу площади треугольника для треугольника ABC:
SABC=AC*h/2=(AD+DC)*h/2
60=(5+7)*h/2
60=12*h/2
60=6*h
h=10
Теперь применим эту же формулу для треугольника ABD:
SABD=AD*h/2=5*10/2=5*5=25
Ответ: 25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №86EC18

Найдите угол ABC. Ответ дайте в градусах.



Задача №F33FF6

Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 30 см, а длина – 40 см. Найдите расстояние между точками A и B (в метрах).



Задача №259003

В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=62. Найдите AC.



Задача №22636E

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.



Задача №41017F

В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика