Угол A четырёхугольника ABCD, вписанного в окружность, равен 33°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Так как четырехугольник вписан в окружность, то по свойству описанной окружности:
∠A+∠C=180°
∠C=180°-∠A=180°-33°=147°
Ответ: 147
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
В треугольнике ABC угол C равен 45°, AB=6√
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 30°. Найдите величину угла OAB.
Комментарии: