Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Рассмотрим треугольники ABC и MBN.
∠ABC - общий
∠BAC=∠BMN (соответственные углы)
Следовательно, по первому признаку подобия, данные треугольники
подобны (по двум углам).
Поэтому мы можем записать пропорцию соотношения сторон
подобных треугольников:
MN/AC=MB/AB
14/21=MB/24
MB=14*24/21=2*24/3=2*8=16
AM=AB-MB=24-16=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Периметр треугольника равен 33, одна из сторон равна 7,
а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
Катет и гипотенуза прямоугольного треугольника равны 15 и 39. Найдите высоту, проведенную к гипотенузе.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=3 и CH=1. Найдите cosB.
В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах.
Комментарии: