Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.
Проведем высоту
трапеции (красный отрезок). Высота перпендикулярна обоим основаниям (по определению).
Проведем радиусы окружности к обоим основаниям (синие отрезки).
Очевидно, что радиусы, высота и основания образуют прямоугольник, следовательно, радиусы образуют диаметр, который равен высоте.
h=D=2R=2*20=40.
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.
Комментарии:
(2021-05-25 11:19:48) рината: найдите площадь изображенной на клетчатой бумаге с размером клетки 2х2 см.