Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.
Проведем высоту
трапеции (красный отрезок). Высота перпендикулярна обоим основаниям (по определению).
Проведем радиусы окружности к обоим основаниям (синие отрезки).
Очевидно, что радиусы, высота и основания образуют прямоугольник, следовательно, радиусы образуют диаметр, который равен высоте.
h=D=2R=2*20=40.
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=39°. Найдите угол BCO. Ответ дайте в градусах.
На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
Площадь параллелограмма ABCD равна 6. Точка E – середина стороны AB. Найдите площадь трапеции EBCD.
Комментарии:
(2021-05-25 11:19:48) рината: найдите площадь изображенной на клетчатой бумаге с размером клетки 2х2 см.