ОГЭ, Математика. Геометрия: Задача №26768F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №26768F

Задача №791 из 1084
Условие задачи:

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.

Решение задачи:

Вариант №1
MN - средняя линия треугольника ABC, по теореме о средней линии NM=AB/2 => 2NM=AB.
Проведем высоту из вершины С.
SCNM=1/2*CE*NM=67 (по условию).
CE*NM=134
Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция (по определению), тогда
SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*134=201
Ответ: 201


Вариант №2 (Прислал пользователь Артем)
MN - средняя линия треугольника ABC, по теореме о средней линии MN=AF=FB.
Проведем два отрезка от середины AB к точкам N и M, как показано на рисунке.
FN и FM - тоже являются средними линиями, следовательно:
FN=CM=BM и FM=AN=CN
Заметим, что треугольники ANF, CNM, MBF и NMF равны друг другу по третьему признаку равенства треугольников.
SABNM=SANF+SNMF+SMBF=SCNM+SCNM+SCNM=3*SCNM=3*67=201
Ответ: 201

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D9D8CC

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №47C478

Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.



Задача №F1AE38

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.



Задача №B91F47

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.



Задача №AB7216

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика