Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=54/2=27
S=r*p=1*27=27
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.
Найдите площадь треугольника, изображённого на рисунке.
Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).
Комментарии:
(2022-12-27 19:06:59) Алина: Радиос окружности вписанной в равнобедренную трапецию равен 14 найдите высоту этой трапеции
(2018-03-04 17:21:28) Администратор: В данной задача она не нужна. Обычно, авторы для одного и того же условия придумывают различные вопросы. Поэтому условие получается более универсальным и с избыточными данными.
(2018-03-03 22:54:08) : Зачем нужна была сторона 15