Периметр треугольника равен 54, одна из сторон равна 15,
а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=54/2=27
S=r*p=1*27=27
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Стороны AC, AB, BC треугольника ABC равны 2√
Какой угол (в градусах) описывает часовая стрелка за 2 часа 16 минут?
В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите
угол A. Ответ дайте в градусах.
Комментарии:
(2022-12-27 19:06:59) Алина: Радиос окружности вписанной в равнобедренную трапецию равен 14 найдите высоту этой трапеции
(2018-03-04 17:21:28) Администратор: В данной задача она не нужна. Обычно, авторы для одного и того же условия придумывают различные вопросы. Поэтому условие получается более универсальным и с избыточными данными.
(2018-03-03 22:54:08) : Зачем нужна была сторона 15