ОГЭ, Математика. Геометрия: Задача №239EF1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №239EF1

Задача №901 из 1087
Условие задачи:

Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.

Решение задачи:

По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=54/2=27
S=r*p=1*27=27
Ответ: 27

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №AC6D81

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №29D911

Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.



Задача №FE6AD0

Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.



Задача №60E3AB

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=8, BF=15.



Задача №D136EB

Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD.

Комментарии:


(2018-03-04 17:21:28) Администратор: В данной задача она не нужна. Обычно, авторы для одного и того же условия придумывают различные вопросы. Поэтому условие получается более универсальным и с избыточными данными.
(2018-03-03 22:54:08) : Зачем нужна была сторона 15

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика