Стороны AC, AB, BC треугольника ABC равны 2√
По условию задачи ∠KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 2√
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. ∠KAC=∠ABC. ∠ACK не равен ∠ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому ∠ACK = ∠BAC. Следовательно, ∠AKC=∠ACB => cos(∠AKC)=cos(∠ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(∠ACB).
(√
11=4*5+4-8*√
11-24=-8*√
13=8*√
cos(∠AKC)=cos(∠ACB)=13/(8*√
Ответ: cos(∠AKC)=13/(8*√
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Радиус вписанной в квадрат окружности равен 14√
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 28.
Комментарии: