Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите ∠C, если ∠A=81°. Ответ дайте в градусах.
Так как сторона AC треугольника ABC проходит через центр
описанной около него окружности, то AC - это диаметр окружности.
Следовательно, треугольник ABC - прямоугольный (по
свойству описанной окружности), т.е. ∠B=90°.
По
теореме о сумме углов треугольника:
∠A+∠B+∠C=180°
81°+90°+∠C=180°
∠C=180°-81°-90°
∠C=9°
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Синус острого угла A треугольника ABC равен . Найдите CosA.
ABCDEFGHI – правильный девятиугольник. Найдите угол ADC. Ответ дайте в градусах.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7.
Комментарии: