Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=72°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 72°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 72/2=36.
Ответ: /ACB=36°.
Поделитесь решением
Присоединяйтесь к нам...
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,6 м, если длина его тени равна 2 м, высота фонаря 4 м?
Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=52°. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны 4√
Диагональ прямоугольника образует угол 75° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Комментарии: