Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Обозначим ключевые точки, как показано на рисунке.
Рассмотрим треугольник ABC.
AF=FB (по
определению средней линии трапеции).
Тогда, по теореме Фалеса:
AE=EC
Получается, что FE -
средняя линия треугольника ABC.
FE=BC/2=8/2=4 (по
теореме о средней линии треугольника).
Рассмотрим треугольник ACD.
Аналогично, EG -
средняя линия данного треугольника, следовательно EG=AD/2=18/2=9.
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: