Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=72°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 72°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 72/2=36.
Ответ: /ACB=36°.
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла AOB.
В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 6.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Комментарии: