Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №0E2331

Задача №591 из 1084
Условие задачи:

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.

Решение задачи:

Проведем отрезки CM и MB.
∠BMC является вписанным в окружность и опирается на дугу в 180° (так как BC - диаметр окружности).
Следовательно, ∠BMC=90° (по теореме о вписанном угле).
Получается, что треугольник MBC - прямоугольный.
Рассмотрим треугольники MBC и MBD.
∠BMC=∠BDM=90°
∠MBD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Рассмотрим треугольники MBC и MDС.
∠BMC=∠MDC=90°
∠MCD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Значит треугольник MBD подобен треугольнику MDС.
Тогда: MD/BD=CD/MD
MD2=CD*BD
82=CD*BD
64=CD*BD
Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.
∠AEH=∠BDH=90°
∠AHE=∠BHD (так как это вертикальные углы).
Следовательно, используя теорему о сумме углов треугольника, получаем, что ∠HAE=∠HBD.
Рассмотрим треугольники ADC и BDH.
∠HAE=∠HBD (как мы уже выяснили).
∠ADC=∠BDH=90°
Следовательно, данные треугольники подобны (по первому признаку подобия).
Тогда:
AD/BD=DC/DH
AD*DH=BD*DC=64 (см. выше).
DH=64/AD=64/32=2
AH=AD-DH=32-2=30
Ответ: AH=30

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №C1B4DE

Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).

Задача №95DDBE

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, СF = АM. Докажите, что EFKM — параллелограмм.

Задача №239EF1

Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.

Задача №B7AE64

Катеты прямоугольного треугольника равны 521 и 10. Найдите синус наименьшего угла этого треугольника.

Задача №C0D640

Найдите тангенс угла AOB.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика