В треугольнике ABC угол C прямой, AC=6, cosA=0,6. Найдите AB.
По
определению косинуса, cosA=AC/АВ=6/АВ=0,6.
АВ=6/0,6=10.
Ответ: АВ=10.
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /ACB=32° (см. рисунок). Найдите величину угла AOB (в градусах).
Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
Комментарии: