ОГЭ, Математика. Геометрия: Задача №FE6AD0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

∠CDK=∠AKD (т.к. это накрест-лежащие углы).
Так как DK - биссектриса, то:
∠CDK=∠ADK.
Получается, что треугольник AKD - равнобедренный (по свойству равнобедренного треугольника).
Тогда, по определению равнобедренного треугольника:
AD=AK.
∠DCK=∠CKB (т.к. это накрест-лежащие углы).
Так как CK - биссектриса, то:
∠DCK=∠KCB.
Получается, что треугольник CKB - равнобедренный (по свойству равнобедренного треугольника).
Тогда, по определению равнобедренного треугольника:
BC=BK.
AD=BC (по свойству параллелограмма), следовательно:
AK=KB

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №6E857B

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.



Задача №D8D261

Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.



Задача №8B0092

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.



Задача №68A55F

Площадь круга равна 78. Найдите площадь сектора этого круга, центральный угол которого равен 60°.



Задача №8498EC

В треугольнике ABC с тупым углом ABC проведены высоты AA1 и CC1. Докажите, что треугольники A1BC1 и ABC подобны.

Комментарии:


(2018-02-25 20:24:08) Администратор: da13, не за что)
(2018-02-25 20:18:43) da13: Я поняла) СПасибо!
(2018-02-25 20:16:38) da13: Почему СК - биссектриса?
(2016-09-22 15:59:07) Администратор: Карина, мы не помогаем делать домашнее задание, а разбираем задачи, которые будут на экзаменах. Эти задачи берутся с сайта fipi.ru.
(2016-09-22 15:30:19) карина: ав=сд ас=ад доказать что параллелограмм

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика