ОГЭ, Математика. Геометрия: Задача №EC6A26 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EC6A26

Задача №251 из 1087
Условие задачи:

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.

Решение задачи:

Проведем высоты BE и CF как показано на рисунке.
Рассмотрим треугольник CDF. Он прямоугольный, т.к. CF-высота.
По теореме о сумме углов треугольника /FCD=180°-90°-60°=30°. По определению синуса sin/FCD=DF/CD=sin30°=1/2
Т.е. DF=CD/2, CD, в свою очередь, по условию задачи равно AD/2, получаем, что DF=AD/4.
BC=AD/2 (по условию задачи)
EF=BC=AD/2 (т.к. BCFE - прямоугольник)
Вычислим AE, AE=AD-DF-EF=AD-AD/4-AD/2=AD/4, т.е. мы получили, что AE=FD
Рассмотрим треугольники ABC и DCF:
BE=CF (т.к. BCFE - прямоугольник)
AE=FD (только что получили)
/AEB=90°=/DFC, тогда по первому признаку равенства, треугольники ABC и DCF равны.
Следовательно, AB=CD, т.е. наша трапеция равнобедренная.
AB=CD=2 (по условию задачи), AD=2*CD=2*BC=4 (тоже по условию), BC=CD=2
FD=AD/4=1
По теореме Пифагора CD2=CF2+FD2
22=CF2+12
CF2=3, CF=3
SABCD=((BC+AD)/2)*CF=((2+4)/2)*3
SABCD=33
Ответ: SABCD=33

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1113A9

Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.



Задача №248EE7

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.



Задача №F4E03B

Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.



Задача №8735DE

Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №3B3D55

Найдите угол ABC . Ответ дайте в градусах.

Комментарии:


(2015-05-09 14:32:31) Администратор: Влад, спасибо за найденную опечатку, исправлено.
(2015-05-07 21:27:18) Влад: Есть ошибка в решении, вроде бы. Написано: "уголAEF = 90 = углуDFC" А должно быть, вроде, уголAEB = 90 = углуDFC

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика