Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
2x-x2≠0
x(2-x)≠0
x1≠0
x2≠2
Теперь упростим нашу функцию:
График этой функции - гипербола.
Построим график по точкам:
X | -2 | -1 | 1 | 2 |
Y | 0,5 | 1 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
Известно, что число m отрицательное. На каком из рисунков точки с координатами 0, m, 2m, m2 расположены на координатной прямой в правильном порядке?
1)
2)
3)
4)
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k>0, b<0 3) k>0, b>0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На каком рисунке изображено множество решений неравенства x2-17x+72≥0?
1)
2)
3)
4)
Комментарии: