Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №8288D1

Задача №505 из 1068
Условие задачи:

Основания трапеции относятся как 2:3. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Решение задачи:

По девятому свойству трапеции треугольники AOD и BOC - подобны.
Следовательно, BC/AD=OC/AO=2/3
Проведем через точку пересечения диагоналей отрезок, перпендикулярный основаниям.
Рассмотрим треугольники AOF и COE.
∠OAF=∠OCE ( накрест-лежащие углы).
∠AFO=∠CEO=90°
Следовательно, данные треугольники подобны (по первому признаку подобия треугольников).
Тогда, OC/AO=OE/OF=2/3
Для простоты обозначим BC как 2x, а AD как 3x
По пятому свойству трапеции GH=2*2x*3x/(2x+3x)=12x2/5x=12x/5
Площадь верхней трапеции:
S1=(BC+GH)*EO/2=(2x+12x/5)*EO/2=(10x+12x)*EO/10=22x*EO/10
Площадь нижней трапеции:
S2=(AD+GH)*OF/2=(3x+12x/5)*OF/2=(15x+12x)*OF/10=27x*OF/10
S1/S2=(22x*EO/10)/(27x*OF/10)=(22x*EO)/(27x*OF)=22EO/27OF=22*2/(27*3)=44/81
Ответ: 44/81

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №FC7964

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.

Задача №B56899

Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

Задача №77AE51

Основание AC равнобедренного треугольника ABC равно 4. Окружность радиуса 2,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Задача №183D76

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80. Найдите расстояние от хорды AB до параллельной ей касательной k.

Задача №09EE8F

Тангенс острого угла прямоугольной трапеции равен 5/3. Найдите её большее основание, если меньшее основание равно высоте и равно 40.

Комментарии:


(2019-04-29 00:31:44) Администратор: Наталья, нажимайте на ссылки в решении задачи, откроется окно с пояснениями.
(2019-04-29 00:20:55) наталья: что это за пятое свойство трапеции?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика