Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).
Чтобы определить высоту, на которую поднимается лестница, надо узнать количество ступеней и умножить на высоту ступени.
Каждая ступенька представляет из себя
прямоугольный треугольник, следовательно расстояние между точками А и В будет равняться сумме гипотенуз ступеней.
По
теореме Пифагора:
Квадрат гипотенузы одной ступени равен 10,52+362=110,25+1296=1406,25
Тогда длина гипотенузы равна √
1500/37,5=40 ступеней составляют лестницу.
10,5*40=420 см - высота лестницы = 4,2 м
Ответ: 4,2
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 30°. Найдите величину угла OAB.
От столба к дому натянут провод длиной 13 м, который закреплён на стене дома на высоте 4 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.
Комментарии:
(2017-02-24 20:04:10) Администратор: Марина, потому, что \"каждая ступенька - это прямоугольный треугольник\", а расстояние между точками - это гипотенуза этого треугольника. Можно, конечно, решать и без теоремы Пифагора, через теорему косинусов, или через радиус описанной окружности, но это усложнит решение.
(2017-02-24 19:04:43) Марина: Почему решается по теореме пифагора?