Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=82+12
AO2=64+1=65
AO=65
AB2=92+32
AB2=81+9=90
AB=90
BO2=102+52
BO2=100+25=125
BO=125
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(90 )2=(65 )2+(125)2-2*65*125*cos∠AOB
90=65+125-265*125*cos∠AOB
-100=-265*5*25*cos∠AOB
50=5325*cos∠AOB
10=25*13*cos∠AOB
10=513*cos∠AOB
2=13*cos∠AOB
cos∠AOB=2/13
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(2/13)2=1
sin2∠AOB+4/13=1
sin2∠AOB=1-4/13
sin2∠AOB=13/13-4/13
sin2∠AOB=(13-4)/13
sin2∠AOB=9/13
sin∠AOB=3/13
tg∠AOB=sin∠AOB/cos∠AOB=(3/13)/(2/13)=3/2=1,5
Ответ: tg∠AOB=1,5


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=10/5=2
2) Для красного треугольника: tgβ=1/8=0,125
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(2-0,125)/(1+2*0,125)=1,875/1,25=1,5
Ответ: tg∠AOB=1,5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №CF2D65

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.

Задача №D4DF53

Стороны AC, AB, BC треугольника ABC равны 32, 11 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Задача №E41C75

Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.

Задача №B04F9A

Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, вписанной в этот треугольник.

Задача №1113A9

Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.

Комментарии:


(2015-05-26 17:23:49) 2 вариант это: Аналитическая геометрия уже
(2015-02-25 14:27:47) Администратор: Светлана, интересный подход, присылайте на zapros@otvet-gotov.ru. Обязательно изучу и опубликую Ваш вариант.
(2015-02-25 13:47:48) Светлана: Можно найти через скалярное произведение векторов ОА(8;1) и ОВ(5;10),если поместить т.О в начало координат .На какой адрес можно присылать свои варианты решения?
(2015-01-19 00:12:30) Администратор: Раиса, изначально, второй вариант был единственным, но мне писали, что эта формула девятиклассникам неизвестна. Один из пользователей прислал другой вариант. Он длиннее, но зато основан на известных в девятом классе теоремах, поэтому я посчитал, что нужно показать оба варианта.
(2015-01-18 10:48:07) Раиса: Спасибо, второй вариант проще, главное, чтобы знали учащиеся формулу тангенс разности 2-х углов

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика