В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.
Так как AB=CD, значит трапеция ABCD -
равнобедренная.
Тогда по
свойству равнобедренной трапеции ∠ABC=∠BCD=95° и ∠CDA=∠DAB.
Вспомнив, что сумма углов выпуклого n-угольника вычисляется по формуле (n-2)180°, получим, что сумма углов трапеции равна (4-2)180°=360°.
Тогда ∠ABC+∠BCD+∠CDA+∠DAB=360°
95°+95°+∠CDA+∠DAB=360°
∠CDA+∠DAB=170°
∠CDA=∠DAB=170°/2=85°
Рассмотрим треугольник ACD.
Так как AC=AD, то данный треугольник -
равнобедренный.
Следовательно, по
свойству равнобедренного треугольника ∠CDA=∠DCA=85°
∠BCA=∠BCD-∠DCA=95°-85°=10°
∠CAD=∠DCA=10° (т.к. они
накрест-лежащие для параллельных прямых AD и BC).
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinB=5/8, AB=16. Найдите AC.
Человек ростом 1,8 м стоит на расстоянии 6 м от столба, на котором висит фонарь на высоте 7,2 м. Найдите длину тени человека в метрах.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.
Высота равностороннего треугольника равна 15√
Комментарии: