ОГЭ, Математика. Геометрия: Задача №6358E5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Обозначим ключевые точки, как показано на рисунке и проведем высоты BE и CF.
Рассмотрим четырехугольник BCFE.
∠CFE=∠BEF=90° (так как BE и CF - высоты).
∠CBE=180°-∠BEF=180°-90°=90° (так как это внутренние односторонние углы при параллельных прямых AD и BC и секущей BE).
∠BCF=90° (аналогично углу CBE).
Получается, что BCFE - прямоугольник.
Тогда BE=CF и BC=EF=3 (по свойству прямоугольника).
Рассмотрим треугольники ABE и CDF.
AB=CD=25 (так как трапеция равнобедренная).
BE=CF (это мы выяснили ранее).
∠ABC=∠DCB (так как по свойству равнобедренной трапеции, угли при одном основании равны).
Следовательно, равно и следующее равенство:
∠ABC-90°=∠DCB-90° - это и есть углы ABE и DCF соответственно, т.е.:
∠ABE=∠DCF
Тогда, по второму признаку равенства треугольников, данные треугольники равны.
Следовательно, AE=FD.
AD=AE+EF+FD=AE+BC+AE=2AE+3=17
2AE=14
AE=7=FD
Найдем высоту CF по теореме Пифагора:
CD2=CF2+FD2
252+CF2+72
625=CF2+49
CF2=576
CF=24
Найдем AC по теореме Пифагора:
AC2=CF2+AF2
AC2=CF2+(AE+EF)2
AC2=242+(7+3)2
AC2=576+100=676
AC=26
Ответ: 26

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №210C80

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.



Задача №AC6D81

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №EE3D1E

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 155°. Найдите угол C. Ответ дайте в градусах.



Задача №4D5C0E

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №F629A3

Площадь прямоугольного треугольника равна 23/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика