Найдите угол ABC. Ответ дайте в градусах.
Проведем два отрезка к центру окружности как показано на рисунке.
По координатной сетке видно, что получившийся угол AOC прямой, т.е. равен 90°.
∠AOC является
центральным для окружности, следовательно градусная мера дуги, на которую он опирается, тоже равна 90°.
∠ABC -
вписанный угол и по
теореме равен 90°/2=45°
Ответ: ∠ABC=45°
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 25°. Найдите больший угол параллелограмма.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.
Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
Комментарии:
(2015-05-16 19:10:55) Светлана: По свойству вписанных углов данный угол замените равным, опирающимся на ту же самую дугу АС (Вершина такого угла будет лежать четырьмя точками выше от точки А). В полученном прямоугольном треугольнике катеты равны, значит он ещё и равнобедренный. угол равен 45.
(2015-04-06 22:43:44) Администратор: Елена, да, можно и так.
(2015-04-06 18:52:31) Елена: По сетке видно, что дуга АС-это четвёртая часть окружности, значит дуга АС равна 90 градусов. Вписанный угол АВС равен половине дуги на которую он опирается, значит 45 градусов